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ABSTRACT

We present NaturalCC, an efficient and extensible open-source
toolkit for machine-learning-based source code analysis (i.e., code
intelligence). UsingNaturalCC, researchers can conduct rapid pro-
totyping, reproduce state-of-the-art models, and/or exercise their
own algorithms. NaturalCC is built upon Fairseq and PyTorch,
providing (1) a collection of code corpus with preprocessing scripts,
(2) a modular and extensible framework that makes it easy to repro-
duce and implement a code intelligence model, and (3) a benchmark
of state-of-the-art models. Furthermore, we demonstrate the usabil-
ity of our toolkit over a variety of tasks (e.g., code summarization,
code retrieval, and code completion) through a graphical user in-
terface. The website of this project is http://xcodemind.github.io,
where the source code and demonstration video can be found.
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1 INTRODUCTION

Code intelligence is about applying machine learning, including
deep learning techniques to analyze the big corpora of source code
collected from open-source platforms (e.g., GitHub and StackOver-
flow). In recent years, many code intelligence approaches have
been proposed for automating various programming tasks, such as
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code summarization [3, 25–27], code retrieval [7, 8, 24], and code
completion [15], with the aim of improving developer productivity.

However, there still exist several limitations that hinder the de-
velopment of machine learning-based source code analysis. There
are two aspects to be investigated in this work. (a) Lack of stan-
dardized algorithm implementation and toolkit for reproducing the
results of existing methods: nowadays deep learning methods are
widely used, but they are not always easily reproducible due to
their sensitivity to data and algorithm implementations; therefore,
it is beneficial to build a toolkit with different algorithms integrated
within a unified framework. (b) Lack of benchmarks for fair com-
parisons between models: for a given task, a research paper usually
declares that a performance gain has been achieved; it is important
to build a benchmarking framework to understand whether the
performance gain is from the model design itself, hyperparameter
tuning, or unfair settings.

There exist many established toolkits such as Fairseq [19], Al-
lenNLP [6], and Stanza [20] in the area of natural language process-
ing (NLP), but it is difficult to directly apply them to analyze source
code written in programming languages. In particular, Fairseq was
originally designed for modeling sequence-to-sequence tasks for
natural languages (e.g., neural machine translation and language
model pre-training). On the other hand, AllenNLP and Stanza are
designed to model various kinds of NLP tasks. In these toolkits,
the input is usually plain natural language text. When adapting
these toolkits to programming languages, the biggest challenge
is to incorporate the structural properties of source code such as
AST (abstract syntax tree) and CFG (control-flow graph). In addi-
tion, the nature of source code-related tasks is often different from
that of NLP tasks. Notable contemporary work is CodeXGLUE [18],
which aims to build a benchmark dataset for code understanding
and generation based on CodeBERT [5] and GraphCodeBERT [9].
Unlike their work, we focus more on building the infrastructures of
various model implementations and enabling users to conduct rapid
prototyping. In addition, our NaturalCC also integrates plentiful
compiler tools and scripts for data preprocessing.

In this paper, we propose NaturalCC (stands for Natural Code
Comprehension), a comprehensive platform for analyzing source
code corpora to achieve code intelligence using machine learning
techniques. We demonstrate NaturalCC with a graphical user
interface, using three application tasks, i.e., code summarization,
code retrieval, and code completion. We believe researchers from
software engineering or other communities can be benefited from
the toolkit for fast model prototyping and reproduction. We also
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Figure 1: The pipeline of NaturalCC.

encourage researchers to integrate their state-of-the-art approaches
into NaturalCC, to promote the research in both communities.

In summary, NaturalCC features the following contributions.

• A collection of code corpus with preprocessing scripts. We
have cleaned and preprocessed three public datasets (i.e., Code-
SearchNet [11], Python-Doc [25], and Py150 [22]). We provide
data preprocessing scripts for extracting multiple code features,
using compiler tools such as LLVM [17].

• An extensible framework. Based on the registry mechanism
implemented in Fairseq [19], our framework is well modularized
and can be easily extended to various tasks. In particular, when
implementing a new task, users only need to implement models
by instantiating one of our templates and then register them.

• Performance benchmark. We have benchmarked three down-
stream tasks (code summarization, code retrieval, and code com-
pletion) over three datasets using NaturalCC, achieving state-
of-the-art or competitive performance.

2 DESIGN AND IMPLEMENTATION

Figure 1 shows the pipeline of our NaturalCC. Given a dataset of
code snippets, we first preprocess the data and then feed each mini-
batch of samples into the code representation module, which is a
fundamental component for several downstream tasks. In the code
representation module, we have implemented many state-of-the-art
encoders (e.g., RNN, GNN, Transformer, and BERT). Based on the
code representation, NaturalCC supports various downstream
tasks, e.g., code summarization, code retrieval, and code completion.

2.1 Dataset and Data Preprocessing

We have collected three related datasets which have been widely
adopted in the evaluation of different tasks. CodeSearchNet [11] is a
public dataset of 6,452,446 source code snippets from GitHub, writ-
ten in six programming languages, ranging from Java, Python, PHP,
Javascript, Go, to Ruby. In this dataset, nearly 32% code snippets
are with description, while others are not. This dataset has been
widely used for the evaluation of source code retrieval and code
summarization. Python-Doc [25] is a dataset of parallel Python

code snippets with corresponding descriptions, which has been
widely adopted for code summarization. Py150 [22] is a collection
of 150𝑘 Python source code files, which has been widely used for
evaluating code completion.

In the data preprocessing stage, we first tokenize the source code
by a tokenizer (e.g., space tokenizer or BPE [14] tokenizer) and then
build a vocabulary for these tokens. In addition to code tokens, we
also extract some domain-specific features such as AST, intermedi-
ate representation, control-flow graphs, or data-flow graphs. The
goal of this process is to build a series of mini-batches for training.
We put all data-related processing scripts in the data and dataset
folders.

Code Token. Like tokenizing natural languages, we support to-
kenizing source code in different granularities, including character-
level, word-level, and sub-word level (e.g., BPE). We split each word
by character, space, or camel word. We use the sentencepiece
module [16] for sub-word level tokenization.

Intermediate Representation (IR). Intermediate Representation
(IR), formalized as three-address code, is a data structure used inter-
nally by a compiler when translating source code into low-level
machine code. IR is independent on programming languages and
machines, and has a much smaller vocabulary than that are built
from lexical token modality. Therefore, it has a great potential for
representing multi-lingual programming languages. In this paper,
we adopt the IR generated by LLVM.

Abstract Syntax Tree (AST). Abstract Syntax Tree (AST) repre-
sents the abstract syntactic structure of source code in tree-format.
We extract ASTs of code by using the tree-sitter1 parser, and
store them in JSON format.

Code Graph Building. To capture the structural properties of
source code, we build the flow graphs, including control-flow graph,
data-flow graph, and call graph using LLVM Clang2, and store them
in the Google protocol buffer3 format.

1https://tree-sitter.github.io/tree-sitter
2https://clang.llvm.org
3https://github.com/protocolbuffers/protobuf
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Table 1: A summary of state-of-the-art models designed for

different code-related tasks, and the datasets for evaluation.

Task Dataset Model

Code Summarization Python-Doc Seq2Seq [12], Transformer [1], PLBART [2]
Code Retrieval CodeSearchNet NBow, Conv1D, Bi-RNN, SelfAttn [11]
Code Completion Py150 LSTM [10], GPT-2, TravTrans [15]

2.2 Code Representation

Code representation, which aims to learn an embedding vector,
is one of the most critical components for big code analysis. In
NaturalCC, we have included most state-of-the-art neural net-
work encoders to represent the source code and their extracted
features. For example, we have implemented RNN-based models to
represent the sequential tokens or (linearized) AST of code. We im-
plement graph neural networks (GNNs) such as gated graph neural
networks (GGNNs) to represent the graph structure features of code
(e.g., control-flow and data-flow graphs). We have also included
the Transformer network, which serves as the replacement of the
RNN network, with its fast computation and ability to handle long-
range dependent sequence. In addition, NaturalCC also supports
the masked pre-trained models, e.g., BERT, RoBERTa, and BART.
We put all the code representation networks in the models and
modules folders.

Code Pre-training. As the pre-training technology (i.e., BERT
and GPT) has achieved great success in representation learning,
recently there have been several efforts (e.g., CuBERT [13], Code-
BERT, PLBART [2], and GraphCodeBERT) in pre-training a BERT
or GPT for source code. In NaturalCC, we have also integrated the
pre-training techniques. For example, we have included PLBART [2]
for code summarization and GPT-2 for code completion.

2.3 Tool Implementation

The source code structure of NaturalCC is shown in Figure 1.
The dataset folder is for data preprocessing. The ncc folder is the
core module. The third_party folder contains packages for model
evaluation. The gui folder is for graphical user interface. We imple-
ment NaturalCC based on Fairseq and PyTorch. By adopting the
outstanding registry mechanism designed in Fairseq, NaturalCC
also has good extensibility with a modular design.

Registry Mechanism. We have implemented a register deco-
rator in the entry to build a task, model or module (cf. __init__.py
in each folder). In brief, the registry mechanism is to design a
global variable to store each task of model objects for the off-
the-shelf fetching. This registry mechanism is easy for extension
and rapid prototyping, as we only need to include this decorator
when defining a new task/model/module in the corresponding func-
tion. Therefore, we can integrate new tasks or datasets, such as
CodeXGLUE [18].

Efficient Training. Following Fairseq, we use the NCCL library
and torch.distributed to support model training on multiple
GPUs. Every GPU stores a copy of model parameters, and the
global optimizer functions as synchronous optimization in each
GPU. Furthermore,NaturalCC can also support both full precision
(FP32) and half-precision floating point (FP16) for fast training and

Table 2: Performance of code summarization on Python-Doc.

BLEU METEOR ROUGE-L Cost

Seq2Seq+Attn 25.57 14.40 39.41 0.09s/Batch
Tree2Seq+Attn 23.35 12.59 36.49 0.48s/Batch
Transformer 30.64 17.65 44.59 0.26s/Batch
PLBART 32.71 18.13 46.05 0.26s/Batch

inference. To preserve model accuracy, the parameters are stored
in FP32 while updated by FP16 gradients.

Flexible Configuration. Unlike using argparse for command-
line options in Fairseq, we propose to create a yaml file as configu-
rations for each model and its variants. We believe it is more flexible
to modify the yaml configuration files for model explorations.

3 PERFORMANCE BENCHMARK

NaturalCC currently supports three downstream tasks, code sum-
marization, code retrieval, and code completion, to showcase the
effectiveness of the proposed framework. The implementations of
the tasks in this toolkit can serve as baselines for fair comparisons
in future research work. Table 1 gives a summary of the state-of-
the-art models designed for the targeted source code-related tasks.

Note that we have carefully implemented and verified all the
models to ensure the performances are on par with the original
papers. We have also built a leaderboard so that users can provide
their performance results for model competition.

3.1 Code Summarization

Summarizing code snippets into natural language descriptions is
an effective way for understanding source code. We provide im-
plementation of several representative models of code summariza-
tion, including Seq2Seq [12], Tree2Seq [4], Transformer [1], and
PLBART [2]. For the Seq2Seq model, we tokenize each code snippet
by white space and build a vocabulary of size 50K. For the Trans-
former models, we use BPE to get the sub-word vocabulary of size
50K. Both models are trained using four V100 GPUs with a learning
rate of 1𝑒-4 and a batch size of 64. We pretrain a BART model for
source code, named PLBART [2]. We first perform the pretraining
on CodeSearchNet for 50,000 iterations, and then fine-tune it on the
Python-Doc dataset [25]. We evaluate each model on the Python-
Doc dataset using the BLEU, METEOR, and ROUGE metrics. The
performance of different models implemented in NaturalCC is
summarized in Table 2. We also record the computational cost (time
cost per batch) for training each model.

3.2 Code Retrieval

Searching relevant code snippets given a natural language query
can help developers with code reuse. We used the CodeSearchNet
dataset [11] along with the MRR evaluation metric, and have imple-
mented its four baseline models in [11], including NBOW, Conv1D,
BiRNN, and SelfAttn. We tokenize each code snippet by BPE and
build a sub-word vocabulary of size 10K. Both models are trained on
a single RTX 6000 GPU with a learning rate of 1𝑒-2 and a batch size
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Table 3: MRR of code retrieval on CodeSearchNet.

Go Java JavaScript PHP Python Ruby Cost

NBOW 66.59 59.92 47.15 54.75 63.33 42.86 0.16s/Batch
Conv1D 70.87 60.49 38.81 61.92 67.29 36.53 0.30s/Batch
BiRNN 65.80 48.60 23.23 51.36 48.28 19.35 0.74s/Batch
SelfAttn 78.45 66.55 50.38 65.78 79.09 47.96 0.25s/Batch

Table 4: MRR@10 of code completion on Py150.

Attr. Num. Identifier Param. All Tokens Cost

LSTM 51.67 47.45 46.52 66.06 73.73 0.31s/Batch
GPT-2 70.37 62.20 63.84 73.54 82.17 0.43s/Batch
TravTrans 72.08 68.55 76.33 71.08 83.17 0.43s/Batch

of 1,000. The performance of the evaluated models is summarized
in Table 3.

3.3 Code Completion

Code completion, which provides the developers a shortlist of prob-
able code candidates according to the current information, is a
primary feature of most modern IDEs. We have implemented the
LSTM [23], Transformer-based GPT-2 [21], and TravTrans [15]
models for reference. We evaluate LSTM and GPT-2 on next token
prediction, and TravTrans on next leaf token prediction. We cat-
egorize the prediction tokens into five classes, namely attributes
(Attr.), numeric constant (Num.), identifier name (Identifier), func-
tion parameter name (Param.) and all tokens, according to their
annotated function from AST. We tokenize each code snippet by
white space and build a vocabulary of size 50K. Both models are
trained using four V100 GPUs with an effective batch size of 128.We
evaluate each model on Py150 dataset using the MRR@10 metric.
The performance of the evaluated models is summarized in Table 4.

4 TOOL USAGE

In this section, we show how to explore NaturalCC through a
proof-of-concept example, as well as a graphical user interface.

4.1 A Proof-of-Concept Example

We take code completion as an example to show the pipeline of
how to implement a new task in NaturalCC quickly.

1 @register_task('completion')
2 class CompletionTask(NccTask):
3 @classmethod
4 def setup_task(cls, args, **kwargs):
5 dictionary = cls.load_dictionary(args)
6 return cls(args, dictionary)
7 def build_model(self, args):
8 model = super().build_model(args)
9 return model

Listing 1: tasks/completion/completion.py

Building a Task. In the first step, we create a CompletionTask
in the ncc/tasks/completion.py, with a decorator register_task
around. Listing 1 shows the whole processing of building a new
task. This class provides a function build_model for building a
model according to the arguments defined by users.

1 @register_model('seqrnn')
2 class SeqRNNModel(NccLanguageModel):
3 @classmethod
4 def build_model(cls, args, config, task):
5 decoder = LSTMDecoder(...)
6 return cls(args, decoder)

Listing 2: models/completion/seqrnn.py

Building a Model. Listing 2 shows the process of building a
RNNmodel for code completion.We define a new class SeqRNNModel
in the ncc/models/completion/seqrnn.py, which inherits the
NccLanguageModel. In this class, we build a decoder neural net-
work LSTMDecoder, which is implemented in the modules folder.

1 # 1. Setup task, e.g., completion, comment generation, etc.
2 task = tasks.setup_task(args)
3 # 2. Build model and criterion
4 model = task.build_model(args)
5 criterion = task.build_criterion(args)
6 # 3. Build trainer
7 trainer = Trainer(args, task, model, criterion)
8 while (
9 lr > args['optimization']['min_lr']
10 and epoch_itr.next_epoch_idx <= max_epoch
11 and trainer.get_num_updates() < max_update
12 ):
13 task.train_step(samples)

Listing 3: trainer/ncc_trainer.py

Model Training. We have designed a trainer (ncc_trainer.py)
module to control the whole training process of models. Listing 3
shows the construction of a Trainer object and the training steps.
Core parameters are stored in this process such that pre-trained
models can be precisely restored during inference or fine-tuning.

4.2 Graphical User Interface

We have also provided a graphical user interface for users to easily
access and explore the results of each trained model through a Web
browser. The design of our website is based on the open-source
demo of AllenNLP [6]. We have deployed it on the Nginx server
and provided flexible APIs via the Flask engine.4

As shown in Figure 2, we have integrated three popular software
engineering tasks for demonstration, i.e., code summarization, code
retrieval, and code completion. Taking code summarization as an
example, by default, we have implemented this task based on the
Transformer. Given a code snippet of Python, when clicking the Run
button, a user-selected trained model will be invoked for inference
and the generated summary will be displayed at the bottom of the
webpage.

5 CONCLUSION

This paper presents NaturalCC, an efficient and extensible open-
source toolkit for machine-learning-based source code analysis
(i.e, code intelligence). Currently, NaturalCC has implemented
many state-of-the-art models for three popular source code-related
tasks, which can serve as benchmarks for fair comparisons. Other
researchers can extend our framework to implement new models or
support new tasks. We have also provided a Web-based graphical
4https://flask.palletsprojects.com
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Figure 2: A screenshot of the graphical user interface of Nat-

uralCC for demonstration.

user interface for users to explore the results. In our future work,
more state-of-the-art models in code intelligence tasks will be in-
tegrated, such as code clone detection, program translation, and
vulnerability detection. We will also support automatic evaluation
of the submitted models.

Artifacts and Resources. All the source code and materials
are publicly available at http://github.com/CGCL-codes/naturalcc.5
Our project webpage is http://xcodemind.github.io, where the demon-
stration video can be found. NaturalCC is still under development.
We encourage researchers and developers to join us to further
promote the development of NaturalCC.
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